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Abstract

Physical factors such as photon attenuation degrade
image quality and quantitative accuracy in single-photon
emissioncomputedtomography(SPECT).It isoftenconsidered
(especially in situations with non-uniform attenuationand
distance-dependentspatial resolution(DDSR)) that adequate
compensationfor the effectsof thesephysicalfactorsrequires
dataacquiredover 2� . However, as the analysisin this work
suggests,one may needdataacquiredonly over � to correct
adequatelyfor the effects of some of the physical factors.
Reductionof thescanninganglein SPECTimagingis desirable
becauseit can reducethe scanningtime and thus minimize
patient-motionand other artifacts, and becausescansover
less than 2� can allow the detectorto be rotatedat a fixed
distancecloserto the patient. Also, in certaincases(e.g., in
cardiacSPECT),onecanchoosethescanningangularrangefor
obtainingmaximumnumbersof photons. This work focuses
on investigationof accurateimagereconstructionin 3D SPECT
from datathatareacquiredwith parallel-beamcollimationonly
over � andthatcontaintheeffectsof photonattenuation(either
uniform or non-uniform)andDDSR. For simplicity, we refer
to such a scanningconfigurationas 3D short-scanSPECT.
This work mayhave significanttheoreticalaswell aspractical
implicationsfor imagereconstructionin SPECT.

I . BACKGROUND

Single-photonemissioncomputedtomography(SPECT)is
an important nuclear medicine imaging modality. Physical
factors in SPECTsuch as photon attenuationand imperfect
spatial resolution degrade image quality and quantitative
accuracy [1,2] andshouldbeadequatelycorrectedfor. Because
these physical factors are generally spatially variant, it is
often considered(especiallyin the situationwith non-uniform
attenuationanddistance-dependentspatialresolution(DDSR))
that adequatecompensationfor the effects of thesephysical
factorsrequiresdata measuredat projection anglesover 2� .
However, as the analysisbelow suggests,it appearspossible
that (at leastundercertainconditions)dataacquiredonly over� canbeusedfor adequatelycorrectingfor theeffectsof some
physical factorssuch as photon attenuation. The reduction
of the scanninganglein SPECTimaging is desirablebecause
it can reducescanningtime and thereby minimize patient-
motion and other artifacts. Also, in certain cases(e.g., in
cardiacSPECT),one can choosethe scanningangularrange
for obtainingmaximumnumbersof photons[3, 4]. This work
focuseson investigationof accurateimage reconstructionin
3D SPECT from data that are acquiredwith parallel-beam

collimation only over � andthat containthe effectsof photon
attenuation(either uniform or non-uniform) and DDSR. For
simplicity, we refer to sucha scanningconfigurationasthe3D
short-scanSPECT.

I I . MATHEMATICAL RATIONALES

A. Redundant Information and Reduction of
Scanning Angle
In sometomographicimagingsystems,the datameasured

over
� � contain redundantinformation. One example is

measurementof the 2D Radon transform [5], �������
	�� , of a
real function over

� � , where � is the detectorbin index and	 is the measurementangle. Such measurementscontain
redundantinformation because,in the absenceof noise and
otherinconsistencies,the measurementsfrom conjugateviews
aremathematicallyidentical,i.e.,�
�����
	��������������
	�� � ��� (1)

It is well known that such information can be exploited for
reducingthescanninganglefrom

� � to � becausethe maximum
difference between the values of the real angles on the two sides
of Eq. (1) is � .

In fan-beam computed tomography (CT), the quantity� ��������� is usedto denotethemeasuredtransmissiondata,where� indicatesthedetectorbin index and � themeasurementangle.
Although the fan-beammeasurements(except for thosewith��� � ) from conjugateviews arenot mathematicallyidentical,
one can still show that the fan-beamdata acquiredover

� �
containsredundantinformation,i.e.,� ����������� � �!�������"� � � �$# ��������� (2)

where
# ����� is a known andreal function of � , and its explicit

form dependsuponthedetectorconfigurations[6,7]. It canbe
shown that %'&)(�* �$# �����,+-� �.# ���!/�0�12� , where �!/�0�1 is a positive
finite numberand 3 �43'56�!/�0�1 . In most practical situations,�$# ���!/�0�17�98 � . Therefore,the maximum difference between
the values of the real angles on the two sides of Eq. (2) is� � �.# ���!/�0�12� , which is lessthan

� � . It is well known that
suchredundantinformationcanbe exploited for reducingthe
scanninganglefrom

� � to � � �$# ��� /�0�1 � , which is referredto
astheshort-scan(or half-scan)fan-beamCT [8,9].

In diffraction tomography(DT) [10, 11], one can derive
a quantity :;�=<��
	�� from the measureddata at a particular
angle 	 , where < canbe interpretedasthespatialfrequency of
the measureddatafunction. It hasbeenshown that :;�=<��,	>�
measuredat anglesover

� � containsredundantinformation
[12], i.e., :;�?<��,	��@�A:;���B<��
	�� � � �$# �?<C����� (3)



where
# �=<C� is a known andreal functionof < , andtheexplicit

form of
# �?<C� is determinedby theDT scanningconfigurations.

Also, it can be shown that %'&)(>* �.# �=<C�,+D� �$# �?<)/�0�17�E8 � ,
where <$/F0�1 is a positive finite number and 3 <G3H5 <)/�0�1 .
Therefore,the maximum difference between the values of real
angles on the two sides of Eq. (3) is � � �.# �=< /�0�1 � , whichis less
than
� � . Again,suchredundantinformationhasbeenexploited

for reducingthe scanninganglefrom
� � to � � �.# �=< /�0�1 � in

DT, which is referredto astheminimum-scanDT [13].
In summary, thedataacquiredover

� � in sometomographic
imagingsystemscontainredundantinformation,which canbe
exploited for reducingthe scanninganglesand/or to reduce
noisein thereconstructedimage[12,14,15]. Theaboveanalysis
suggeststhat,becausethephysicalscanninganglemustbereal,
themaximumscanninganglesaredeterminedby the maximum
differences between the values of the real angles on the two
sides of the equations thatcharacterizetheconsistentconditions
of (or, equivalently, the redundantinformation in) the data
functionsin theseimagingsystems.

B. Redundant Information and Possible Reduction of
Scanning Angle in SPECT
Now weconsider3D SPECTwith parallelbeamprojection.

When the effects of photon attenuation and DDSR are
considered,from themeasureddataonecanobtaintheso-called
modifiedsinogram,which canbeexpressedreadilyasI �����
	���JK�.� L�M2NFO$PRQ7STVU,W�X,Y7Z\[^]_ Za`cb�deW�X
]_�f Zg`cbih?j,b
k L^L M �$l M J7l�m����$leno �=	>��� N no2p �=	����qJ7lr�tsG���>�-�$l=�
Je�uJ7lwv N ��� (4)

where � and J are the 2D detectorindices, m>��xG��y>�
J7� is the
3D radioactivity-distribution function; no �=	��z� ��{4|2}�	��
}�~a�q	��
and no p �?	��"���!�R}�~r�q	��
{�|2},	�� are two orthogonalunit vectors;xF���^{4|2},	$� N }�~a�q	 ; y@������}�~r�q	$� N {4|2}�	 ; �@��xG��y���JK� is theknown
3D attenuationfunction; and s������
Jtv N � is the known distance-
dependentspatialresolutionfunction. The full-width-at-half-
maximum(FWHM) of the latter function is dependentof the
distance

N
. In this work, we considersG������Jqv N � only asa shift-

invariant resolutionfunction. However, it can be a generally
shift-variantresolutionfunction.

1) Possible reduction of scanning angle in SPECT with uniform
attenuation

Obviously, from inspectionof Eq. (4) it is unclearwhether
the data acquired over 	 � � �C� � � � contain redundant
information in 3D SPECT with the effects of non-uniform
attenuationandageneralDDSR.However, whenonly theeffect
of uniform attenuationis considered,the modified sinogram
becomesthe3D exponentialRadontransform(ERT) [16], and
we have demonstratedpreviously that the 3D ERT acquiredat	9�E� �t� � � � containredundantinformation,i.e.,:;�?<$/��,< j �,	�����:;���B<)/��,< j �
	�� � �D	 l �?<$/������ (5)

where:;�=< / �,< j �
	�� is the2D Fouriertransformof themodified
sinogramI �����
Jt�,	�� with respectto � and J , andwhere 	 l �?< / �

is aknown andpurely imaginary functionof <)/ . Wepreviously
developedalgorithmsthat exploit suchredundantinformation
for controlling noisein reconstructedSPECTimages[14,15,
17].

Can such redundantinformation in the ERT be exploited
for reductionof the scanningangle?The analysisin Sec.II.A
suggeststhat, becausethe physical scanningangle must be
real, the maximumscanningangleis the maximum difference
between the values of real portions of the angles on the two
sides of the equations (e.g., seeEqs. (1-3) that characterize
the redundantinformation.) In Eq. (5) of the ERT case,
because	 l �=<)/�� is purely imaginary, we speculatethat it may
have no impacton thedeterminationof themaximumphysical
scanningangle, which must be real, and thus that the ERT
acquiredonly over 	���� �C� � � can be used for accurately
reconstructingimages in SPECT with uniform attenuation.
Our numericalstudiespresentedbelow seemto supportour
hypothesisstrongly.

Furthermore, for SPECT with uniform attenuationand
certainDDSR functionssuchasthe Cauchyfunction [18,19],
one can show that the 2D Fourier transformof the modified
sinogramsatisfiesEq.(4). In thissituation,	 l �?< / �,< j � becomes
afunctionof < / and < j . However, mostimportantly, 	 l �?< / �,< j �
remainspurely imaginary. Therefore,the maximum difference
between the values of the real angles on the two sides of Eq. (5)
remains to be � . This observation leadsus to speculatethat
accurateimagesmaybereconstructedfrom dataacquiredover� in SPECTwith uniform attenuationand DDSR of certain
forms. We investigatedtheoreticallyas well as numerically
the image reconstructionfrom data acquired from only �
in SPECTwith uniform attenuationand DDSR. Indeed,our
numerical investigation below suggeststhat the quality of
imagesreconstructedfrom dataacquiredover � appearto be
comparableto thatof imagesreconstructedfrom dataacquired
over
� � .

2) Possible reduction of scanning angle in SPECT with non-
uniform attenuation

So far, it hasbeengenerallybelieved that one needsdata
over

� � for accurateimage reconstructionin SPECT with
non-uniformattenuation. However, the seeminglypromising
numerical results below obtained for SPECT with uniform
attenuationleads naturally to the question: Can accurate
imagesbe reconstructedfrom the dataacquiredonly over �
in SPECTwith non-uniform attenuation? In an attempt to
answerthis question,we arecurrentlyconductinga theoretical
investigation, which appearsto be an exceedingly difficult
task despite the fact that an analytic solution has recently
been derived for full-scan SPECT with the effect of non-
uniform attenuation[20, 21]. On the other hand, we also
conductednumerical researchon image reconstructionfrom
dataacquiredover � in SPECTwith non-uniformattenuation.
Thesenumericalresults,which arepresentedin Sec.III below,
indicate(at leastfor thecasesthatwestudied)thatthequalityof
imagesreconstructedfrom dataacquiredover � is comparable
to thatof imagesreconstructedfrom thedataacquiredover

� �
in SPECTwhenattenuationis non-uniform.



We investigatednumericallythe imagereconstructionfrom
dataacquiredonly at 	���� �C� � � in short-scanSPECTwith
theeffectsof bothnon-uniformattenuationandDDSR.Again,
the resultsof thesenumericalstudies,as shown below, seem
to suggestthat the quality of imagesreconstructedfrom data
acquiredover � appearto be comparableto that of images
reconstructedfrom dataacquiredover

� � .
3) Reconstruction Algorithm

Although we speculatethat one may needdata acquired
only over 	���� �C� � � for accurateimage reconstructionin
short-scanSPECT, it remainsunclearwhether“closed-form”
algorithmscan be derived to accomplishsuchreconstruction
tasks. On the otherhand,onemay useiterative algorithmsto
reconstructimages(i.e., to obtain solutions m����� � in Eq. (4))
from knowledge of the data I �����
	���JK� over 	�� � �C� � � .
Additive iterative algorithmscanbe devisedfor obtainingthe
solution in Eq. (4). An important questionis whethersuch
algorithmsconvergeand,if so,whetherthey convergeuniquely
to the correct solution. It may be possible to prove the
convergenceof such additive iterative algorithms in certain
situations.However, for adatafunctionthatcontainstheeffects
of non-uniformattenuationandDDSRasshown in Eq.(4), it is
generallydifficult (if not impossible)to prove theconvergence
of additive iterative algorithms.More importantly, theadditive
iterative algorithms [22], in general, cannot guaranteethe
positivity of the solutionsandthuscanbe susceptibleto noise
andother inconsistenciessuchassamplealiasingthat always
accompaniesexperimentallymeasureddata.

For the purposeof simplicity, Eq. (4) can be rewritten
symbolicallyas1� ��yC�@� LK�^� M x�sG��xG��yC�C����x>� ��y������K� (6)

where the real and non-negative functions � ��yC� and ����x��
denotethe data and image functions with domains � � and��1 , respectively, and s���xG��yC� denotesthekernelof theimaging
transformation,which,asshown in Eq.(4), is alsonon-negative.
The task here is to find, from knowledge of the data � ��yC�
(or, equivalently, I �����
	���JK� over 	;��� �C� � � ), a non-negative
solution ����x>� (or, equivalently, m����� � ) that satisfiesEq. (6) (or,
equivalently, Eq. (4).) BecauseEq. (6) (i.e., Eq. (4)) is an
inherentlynon-negativeintegralequation,weproposeto usethe
algorithm

� Zr�$d���b ��x���� � Za�$b ��x��  ��¡ M y�s���xG��yC� L���¡ M y s���x���yC� � ��yC�  � � M x�s���x���yC�C� Zr�.b ��x>�
(7)

to obtainthesolution ����x�� (i.e.,theimagefunction m����� � ), where¢ is thenumberof iterations.
The algorithm in Eq. (7) is related to the expectation

maximization(EM) algorithm[23–27], which hasbeenshown
to yield the maximization-likelihood solution when the data

1The symbols£ and ¤ heredenotegeneral3D spatialcoordinates
in theimageanddataspaces,respectively, andshouldnotbeconfused
with theCartesiancoordinates£ and ¤ in Eq. (4).

Fig. 1: Representative slicesof theactivity map,superimposedon the
attenuationmaps.
function � ��yC� contain Poisson noise [24]. Even in the
absenceof Poissonnoise, from the perspective of solving
the positive integral equation, it can be shown [28] that
the algorithm in Eq. (7) converges in the sensethat the
Kullback-Leiblerdiscrepancy between� Zr�$d���b ��x�� and � Zr�$b ��x>�
approacheszero monotonically at a rate faster than � �� � .
(Recall that it is generallydifficult to prove the convergence
of additive algorithmsfor Eq. (4).) If a unique solution to
Eq. (7) exists, one can show that � Zr�$d���b ��x�� converges to
that unique solution.2 Additionally, from a practical point
of view, the algorithm in Eq. (7) is easy to implement
becauseit involvesonly forwardandbackwardtransformations
and, more importantly, guaranteesthe positivity of the
solution. Numerical investigation suggeststhat the EM
algorithmis generallylesssusceptiblethanadditive algorithms
to the unavoidable noise and inconsistenciescontained in
experimentallyacquiredSPECTdata[22].

I I I . NUMERICAL RESULTS

We conducted computer simulation to evaluate the
possibility of short-scan SPECT reconstruction, as we
stipulatedabove. We considereda SPECTcardiacstudy. The
3D radioactivity map hasa uniform concentrationinside the
myocardiumand is zeroelsewhere. The 3D attenuationmap
is non-uniform, with a value of �C�a¥§¦^{4% P � inside the chest,
exceptfor thelungs,whichhavenoattenuation.Representative
slicesof theradioactivity map,superimposedontheattenuation
map, are shown in Fig. 1. For purposesof comparison,we
also considereda uniform attenuationmap that is obtained
from the non-uniformoneby removing the lungs. We useda

GaussianDDSRof theform s������
Jtv N �@� �¨
©$ª�«)ªS O (K¬®­�� [ ª dej ª¨�«)ªS°¯
to model the blurring effect in the data, where the standard
deviation ±^� N �R�²±C³R�´± � N dependslinearly uponthedistanceN � NoiselessSPECTprojectiondata,coveringthefull

� � view,
was generatedwith Poissonnoise subsequentlyto produce
noisydata.Thesimulatedprojectiondataconsistof ¥ � � views
of ¥ �$µ ��¶
&2·�~g&$¸\� ku¹ � ��&$(�~a&.¸a� sinogramswith abin sizeof �t� � ¦ k�C� � ¦^{4% ¨ � Thesimulatednoisy

� � datahaveabouttenthousand
countsperslice.

In reconstruction,all the simulatedviews were used for
producing“full-scan” reconstruction,whereasonly half of the
views, ranging from ��º � to ¹ ��º � � are used for generating
“short-scan” reconstruction. Both modes of reconstruction
generated¥ �.µ k ¥ �.µ k-¹ � imageswith a �t� � ¦ k �C� � ¦ k �t� � ¦^{�%�»
voxel size. In the resultsshown below, we consideredthree
typesof reconstructions:(a)EM reconstructionfrom theshort-
scandataover � ; (b)EM reconstructionfrom full-scandataover

2Wearecurrentlyinvestigatingtheexistenceof theuniquesolution
to Eq. (4) and the conditionsunderwhich the uniquesolution may
exist.



� � ; and(c) FBPreconstructionfrom short-scandataover � .
Figure 2 shows representative slices of the images

reconstructedfrom noiselessandnoisydata,whichcontainonly
the effect of uniform attenuation. Theseresultsdemonstrate
qualitatively that, for both noiselessand noisy data, images
reconstructedfrom the short-scanand full-scan data are
of essentiallysimilar quality. These reconstructionshave
effectively removedtheeffectsof attenuationthatcanbeclearly
observed in the FBP reconstructions(in the form of reduced
imagebrightnesstoward thecenter).Notice herethat the total
numberof countsin the short-scanreconstructionis only half
of that in the full-scan reconstruction. However, for a fixed
scanningtime, one would expect the short-scandatato have
approximatelythe samenumberof countsas in the full-scan
data. When this factor is taken into consideration,it would
be interestingto comparequantitatively the noise properties
betweenreconstructionsfrom both short-scanand full-scan
data,wherethe former have high signal-to-noiseratio thando
thelatter.

Figure 3 shows representative slices of the images
reconstructedfrom noiselessandnoisydata,whichcontainonly
theeffectof non-uniformattenuation.Again,theseresultsshow
that, for both noiselessand noisy data, imagesreconstructed
fromtheshort-scanandfull-scandataareof comparablequality.
Thesereconstructionshave compensatedeffectively for the
effectsof attenuationthat canbe clearly observed in the FBP
reconstructions.It is alsointerestingto notethedifferencesin
theattenuationartifactsin theFBPimagesbetweenthisandthe
abovecase.

Wesubsequentlyintroducedtheeffectof aGaussianDDSR,
with ±C³¼� �t� � {4% and ± � �;�C� � � � into the simulateddataand
repeatedthe studiesabove. Figure 4 displaysrepresentative
slices of the imagesreconstructedfrom noiselessand noisy
data, which contain the effects of both uniform attenuation
and GaussianDDSR. Again, theseresults suggestthat, for
both noiselessand noisy cases,images reconstructedfrom
the short-scanand full-scan data are of comparablequality.
Thesereconstructionshave compensatedeffectively for the
effectsof uniformattenuationandDDSR,which canbeclearly
observedin theFBPreconstructions.Finally, Figure5 displays
representativeslicesof theimagesreconstructedfrom noiseless
andnoisy data,which containthe effectsof bothnon-uniform
attenuationandGaussianDDSR. Again, theseresultsindicate
that, for both noiselessandnoisy cases,imagesreconstructed
from theshort-scanandfull-scandatahave comparablequality
andthattheeffectsof non-uniformattenuationandDDSRhave
beencompensatedeffectively for.

IV. CONCLUSIONS AND DISCUSSION

It has been observed that the redundant information
contained in some tomographic imaging systems can be
exploited for devising short-scan configurations in these
imaging systems[8, 9, 13]. We have shown previously [14,
15,17] that redundantinformationexists in dataacquiredover� � in SPECTwith uniform attenuationand DDSR of certain
forms. Theseobservationsled us to hypothesizeor speculate

that one may need data acquiredover � insteadof
� � for

accurateimagereconstructionin 3DSPECT, andthusto suggest
the conceptof short-scanSPECT. We proposethe use of a
non-linearEM algorithm to reconstructimagesin short-scan
SPECT. It can be shown that this EM algorithm converges,
and that it convergesto the uniquesolution if sucha unique
solution exists. We also performeda numericalinvestigation
to verify andevaluateaccurateimagereconstructionin short-
scanSPECT. Theseresultsindicate(at leastfor the examples
studied)that the quality of the reconstructedimagesin short-
scan3D SPECTappearsto be essentiallysimilar to that of
reconstructedimagesin full-scan3D SPECT. We arecurrently
performinga detailedquantitative evaluationof imagequality
andaccuracy andwill reportits resultsin thenearfuture.

We are also conducting a theoretical investigation on
the possibility of obtaining analytical solutionsin 3D short-
scanSPECTwhen the effects of attenuationand DDSR are
considered.Recentwork [20,21] on the analyticalsolutions
for 2D full-scan SPECTwith only the effect of non-uniform
attenuationmayprovideusefulinsightsinto ourinvestigationof
short-scanSPECT. Investigationsonsuchanalyticsolutionscan
be theoreticallyimportantin understandingthe reconstruction
problemsin short-scanSPECT. For example,the existenceof
such an analytical solution3 will imply that the solution of
Eq.(4) is unique,andconsequently, thatthenon-lineariterative
algorithmin Eq.(7) convergesto theuniquesolution.

In thiswork, wediscussonly theimagereconstructionfrom
data acquiredat anglesfrom 0 to � . In fact, this can be
consideredasa specialcaseof the so-called� -scheme short-
scan SPECT thatwehaveproposed.Basically, in the � -scheme
short-scanSPECT, the data can be acquiredover disjointed
angularintervals. We speculatethat,aslong asthesummation
of theseintervals without conjugateviews is larger than or
equalto � , imageswith quality comparableto that of images
in full-scan SPECTmay be reconstructed. Our preliminary
numerical investigation has confirmed this observation and
suggeststhat reconstructionfrom dataacquiredover disjointed
angular internals converges even faster than that from data
acquiredfrom 0 to � in short-scanSPECT.4

Thiswork is theoreticallyintriguingbecauseit posesseveral
theoretically interestingand challengingquestions. Does a
uniquesolutionexist in 3D short-scanSPECTwith the effects
of attenuationand DDSR?If so, underwhat conditionsdoes
sucha solution exist? Researchintendedto provide answers
to thesequestionsis currentlyunderway. Also, the practical
implications of this work seem to be significant because
the proposed� -schemeshort-scanallows dataacquisitionsat
desiredprojectionviewsat which theemittedgamma-raysmay

3For instance,the Tretiak-Metz method is an analytic solution
to the reconstructionproblemin 2D full-scan SPECTwith uniform
attenuation.It is highly susceptibleto datanoiseandinconsistencies.
However, its existenceguaranteesthatthereis a uniquesolutionto the
inversionof theERT from its knowledgeover ½4¾ .

4This is understandablebecause,from the numericalperspective,
thelineartransformationassociatedwith dataacquiredover disjointed
angularinternalsgenerallyis betterconditionedthan is that for data
acquiredfrom 0 to ¾ in ¾ -schemeshort-scanSPECT.



Fig. 2: Imagesreconstructedfrom simulateddatawith theonly effect of uniform attenuation.Representative slicesin theimagesreconstructed
from noiseless(left panel)andnoisy(right panel)short-scandata(1strow), thefull-scandata(2ndrow), andFBPreconstructionfrom short-scan
data(3rdrow). 50and20iterationswereusedin thecaseof noiselessandnoisydata,respectively, sothattheir totalcomputationcostis identical.

Fig. 3: Imagesreconstructedfrom simulateddata with the only effect of non-uniform attenuation. Representative slices in the images
reconstructedfrom noiseless(left panel)andnoisy(right panel)short-scandata(1st row), thefull-scandata(2ndrow), andFBPreconstruction
from short-scandata(3rd row). 50and20 iterationswereusedin thecaseof noiselessandnoisydata,respectively.

Fig. 4: Imagesreconstructedfrom simulateddatawith the effectsof bothuniform attenuationandDDSR.Representative slicesin the images
reconstructedfrom noiseless(left panel)andnoisy(right panel)short-scandata(1st row), thefull-scandata(2ndrow), andFBPreconstruction
from short-scandata(3rd row). 50and20 iterationswereusedin thecaseof noiselessandnoisydata,respectively.

Fig.5: Imagesreconstructedfrom simulateddatawith theeffectsof bothnon-uniformattenuationandDDSR.Representativeslicesin theimages
reconstructedfrom noiseless(left panel)andnoisy(right panel)short-scandata(1st row), thefull-scandata(2ndrow), andFBPreconstruction
from short-scandata(3rd row). 50and20 iterationswereusedin thecaseof noiselessandnoisydata,respectively.



undergo the leastattenuationandblurring, thusproviding the
freedomfor significantly reducingthe scanningtime and for
obtainingdatawith a high signal-to-noiseratio. One clinical
study that may benefitfrom sucha � -schemescanis cardiac
imagingwith SPECT.
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